Replace the Column Contains the Values 'yes' and 'no' with True and False in Pandas| PythonValues of the Data Frame are supplanted with different qualities progressively. This varies from updating with. loc or. iloc, which expect you to determine an area to refresh with some worth. to_replace: str, regex, list, dict, Series, int, float, or None The most effective method to find the qualities that will be supplanted. numeric, str or regex:
List of str, regex, or numeric:
dict:
None:
Value:
inplace: Boolean, default Bogus
limit: int, default None
regex: bool or same sorts as to_replace, default Bogus
technique: {'pad', 'ffill', 'bfill', None}
Returns:
Raises:
Value Error:
Sample Data Frame:Std data = {'name of the student': ['Ajay', 'Sai', 'Chikky', 'Pavani', 'Pojitha', 'Michael', 'Sri', 'Devi', 'David', 'Gopal'], 'Scores of the Student': [11.5, 7, 20.5, np.nan, 6, 21, 22.5, np.nan, 10, 30], 'Number of attempts': [10, 9, 5, 6, 7, 2, 8, 3, 2, 1], 'Pass': ['yes', 'no', 'yes', 'no', 'no', 'yes', 'yes', 'no', 'no', 'yes']} labels = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'] Values for each column will be: name: 'Anil', score: 18.5, Number of attempts: 1, Pass: 'yes', label: 'k' Example: Output: The Original rows of the student data is:
Number of attempts name of the student Pass Scores
a 10 Ajay yes 11.5
b 9 Sai no 7.0
c 5 Chikky yes 20.5
d 6 Pavani no NaN
e 7 Pojitha no 6.0
f 2 Michael yes 21.0
g 8 Sri yes 22.5
h 3 Devi no NaN
i 2 David no 10.0
j 1 Gopal yes 30.0
Here, we are replacing the 'Pass' column contains the values 'yes' and 'no' with True and False:
Number of attempts name of the student Pass Scores
a 10 Ajay True 11.5
b 9 Sai False 7.0
c 5 Chikky True 20.5
d 6 Pavani False NaN
e 7 Pojitha False 6.0
f 2 Michael True 21.0
g 8 Sri True 22.5
h 3 Devi False NaN
i 2 David False 10.0
j 1 Gopal True 30.0
Using DataFrame.replace() MethodThis strategy is utilized to supplant a string, regex, list, word reference, series, number, and so forth from an information outline. Syntax: Example: Output: The Original rows of the student data is:
Number of attempts name of the student Pass Scores
a 10 Ajay yes 11.5
b 9 Sai no 7.0
c 5 Chikky yes 20.5
d 6 Pavani no NaN
e 7 Pojitha no 6.0
f 2 Michael yes 21.0
g 8 Sri yes 22.5
h 3 Devi no NaN
i 2 David no 10.0
j 1 Gopal yes 30.0
Here, we are replacing the 'Pass' column contains the values 'yes' and 'no' with True and False:
Number of attempts name of the student Pass Scores
a 10 Ajay True 11.5
b 9 Sai False 7.0
c 5 Chikky True 20.5
d 6 Pavani False NaN
e 7 Pojitha False 6.0
f 2 Michael True 21.0
g 8 Sri True 22.5
h 3 Devi False NaN
i 2 David False 10.0
j 1 Gopal True 30.0
Next TopicScrapy Module in Python |

We provides tutorials and interview questions of all technology like java tutorial, android, java frameworks
G-13, 2nd Floor, Sec-3, Noida, UP, 201301, India










